Mathematica基础——曲线的内蕴性质之曲率

 时间:2026-02-14 17:46:18

1、圆弧上的任意位置的曲率都是常数:

ArcCurvature[{r Sin[t], r Cos[t]}, t]

Mathematica基础——曲线的内蕴性质之曲率

Mathematica基础——曲线的内蕴性质之曲率

2、直线的曲率处处为0:

ArcCurvature[{a+t,b-t}, t]

Mathematica基础——曲线的内蕴性质之曲率

3、Fermat螺旋的极坐标方程是:r=Sqrt[t]。怎么计算它的曲率呢?方法如下:

Simplify[ArcCurvature[{t, t^2}, t, "Polar"], t > 0]//TraditionalForm

Mathematica基础——曲线的内蕴性质之曲率

Mathematica基础——曲线的内蕴性质之曲率

4、曲率半径等于曲率的倒数:

双纽线[t_] := Cos[t]/(1 + Sin[t]^2) {1, Sin[t]}

双纽线曲率半径=1/ArcCurvature[双纽线[t],t]

Mathematica基础——曲线的内蕴性质之曲率

5、曲线的总曲率:

绘制一个三叶结,

三叶结 = KnotData["Trefoil", "SpaceCurve"]

画图:

ParametricPlot3D[三叶结[t],{t,0,2 Pi},

     PlotStyle->{Green,Tube,Thickness[0.02]}]

根据Fary–Milnor 定理,任何纽结的总曲率不能<4π,所以,

总曲率=NIntegrate[ArcCurvature[三叶结[t], t]*Norm[三叶结'[t]], {t, 0, 2 Pi}]

Mathematica基础——曲线的内蕴性质之曲率

Mathematica基础——曲线的内蕴性质之曲率

  • Mathematica 集合的表示与子集判断
  • 【Mathematica】怎么绘制三维复数图?
  • Mathematica应用——绘制精美的3D图形
  • 【Mathematica】圆内作抛物线运动的弹球
  • 怎么用Mathematica解决简单的数论问题?
  • 热门搜索
    一库一库什么意思 米粉什么牌子好 理性是什么意思 楼面价是什么意思 去吧皮卡丘什么意思 administrator是什么意思 爽约的意思 什么软件能看电视直播 搁浅是什么意思 共鸣是什么意思