子集2的n次方怎么得来

 时间:2024-10-30 06:05:34

1、问题:对于集合中有n个元素,其子集共有2^n个。解答:首先需要理解集合和元素的概念,从概念上讲集合是指具有某种特定性质的具体的或抽象的对象汇总而成的集体。其中,构成集合的这些对象则称为该集合的元素。通俗的讲,集合是一个碗,元素是碗里的豆子。所谓子集就是把集合中的豆子放在各个碗中,看看不同组合的画能放几个碗,空碗也算。举个简单的例子:集合设全集U为{1, 2, 3},则它的子集可以是{1}、{2}、{3}、{1, 2}、{1, 3}、{2, 3}、{1, 2, 3}、∅;总共为2^3=8种,这类简单的排列组合既可以归纳为对于集合中有n个元素,其子集共有2^n个用高中排列组合的证明讲即Cn0+Cn1+Cn2+Cn3+...+Cnn=2^n证明的话用(1+x)^n,二项式展开并令x=1以及x=-1联立即可解得上式。

  • 画隐函数y^2-xy+9=0的图像示意图的主要步骤
  • 依概率收敛怎么理解
  • ξ 克西 ksai怎么手写
  • 根据定义求函数极限
  • x的三次方减一怎么因式分解
  • 热门搜索
    手机高德导航怎么用 如何快速的减肥 如何做外贸生意 如何自我催眠 小熊酸奶机怎么做酸奶 广东工贸职业技术学院怎么样 苹果5sid怎么注册 运动让生活更美好 中铁银通卡怎么办理 有种子怎么下载